Remove trailing bulletpoints
All checks were successful
Build CV / build-pdf (push) Successful in 1m52s
All checks were successful
Build CV / build-pdf (push) Successful in 1m52s
This commit is contained in:
parent
5fbdb41349
commit
563a4a5832
16
main.tex
16
main.tex
@ -108,7 +108,7 @@
|
||||
%----------HEADING----------
|
||||
\begin{center}
|
||||
\textbf{\Huge \scshape Yiğit Çolakoğlu} \\ \vspace{1pt}
|
||||
\href{mailto:root@yigit.run}{\underline{root@yigit.run}} $|$
|
||||
\href{mailto:root@yigit.run}{\underline{root@yigit.run}} $|$
|
||||
\href{https://yigit.run}{\underline{yigit.run}} $|$
|
||||
\href{https://github.com/arg3t}{\underline{github.com/arg3t}}
|
||||
\end{center}
|
||||
@ -136,7 +136,7 @@
|
||||
\resumeItemListStart
|
||||
\resumeItem{Maintain OSS threat intelligence correlation platform (CRADLE) processing 15,000+ weekly artifacts from 5 data sources, reducing analysis time by 45\%}
|
||||
\resumeItem{Lead team of 5 engineers developing open source threat intelligence platform CRADLE with 200+ GitHub stars}
|
||||
\resumeItem{Implemented graph-based correlation algorithms (PageRank, risk propagation) in Neo4j for threat classification across 1M+ nodes}
|
||||
\resumeItem{Implemented graph-based correlation algorithms for risk propagation in using Neo4j for threat propagation of 50000 signals, in a graph with 1M+ nodes}
|
||||
\resumeItem{Automated 8 manual threat intelligence workflows using Python, saving 20 hours weekly}
|
||||
\resumeItem{Conducted threat hunting operations, authoring 2 published reports and presenting at ONE Security Summit}
|
||||
\resumeItemListEnd
|
||||
@ -145,15 +145,17 @@
|
||||
{Teaching Assistant}{Sept 2022 -- Present}
|
||||
{TU Delft}{Delft, Netherlands}
|
||||
\resumeItemListStart
|
||||
\resumeItem{Instructed 500+ students across 6 computer science courses including Computer Organization, Distributed Systems, and Embedded Software}
|
||||
\resumeItem{Instructed 500+ students across 6 computer science courses including Object Oriented Programming, Computer Organization, Distributed Systems, Embedded Software and Software Project}
|
||||
\resumeItemListEnd
|
||||
|
||||
\resumeSubheading
|
||||
{Digital Forensics Automation Developer Intern}{Apr 2023 -- July 2023}
|
||||
{Police Department}{Rotterdam, Netherlands}
|
||||
{Dutch Police, Team Zeden}{Rotterdam, Netherlands}
|
||||
\resumeItemListStart
|
||||
\resumeItem{Developed Python-based forensic tool detecting encrypted containers in 5TB+ evidence files, eliminating manual analysis tasks}
|
||||
\resumeItem{Automated field data extraction from desktop devices allowing officers to quickly acquire data from live systems with minimal training}
|
||||
\resumeItem{Managed a 10-week team project with 4 other students, distributed tasks and ensured code quality.}
|
||||
\resumeItem{Developed Python-based forensic tool detecting encrypted containers in 5TB+ evidence files, eliminating manual forensic analysis tasks and integrating into the existing automated analysis pipeline}
|
||||
\resumeItem{Designed a parallelized scanning engine to spawn any number of processes and schedule tasks accross them.}
|
||||
\resumeItem{Automated field data extraction from live systems in time constrained live response situations}
|
||||
\resumeItemListEnd
|
||||
|
||||
\resumeSubHeadingListEnd
|
||||
@ -172,7 +174,7 @@
|
||||
{\textbf{Tilikum -- DAG-based Consensus Protocol with Fair Ordering}}{}
|
||||
\resumeItemListStart
|
||||
\resumeItem{Developed fair-ordering algorithm preventing MEV attacks using ordering linearizability and batch-order-fairness}
|
||||
\resumeItem{Optimized BFT consensus achieving 12,000 tx/s throughput with \textless{}2s latency, major improvement for fair ordering protocols}
|
||||
\resumeItem{Optimized to reach 12,000 tx/s throughput with \textless{}2s latency, big improvement for fair ordering protocols}
|
||||
\resumeItemListEnd
|
||||
\resumeProjectHeading
|
||||
{\textbf{LLVM Fence Optimization -- Memory Ordering Optimization}}{}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user